To make computations on large data sets more efficient, algorithms will frequently divide information into smaller, more manageable, pieces. This idea, for example, forms the basis of the common algorithmic approach known as Divide and Conquer. If we wish to use this principle in planar geometric computations, however, we may require specialized techniques for decomposing our data. This is due to the fact that the data sets are typically points, lines, regions, or polygons. This motivates algorithms that can break-up polygons into simpler pieces. Algorithms that perform such computations are said to compute polygon decompositions. There are many ways that we can decompose a polygon, and there are also many types of polygons that we could d...
We give polynomial-time approximation algorithms for some geometric separation problems: ffl Given ...
We study two decomposition problems in combinatorial geometry. The rst part of the thesis deals with...
AbstractSeveral algorithms for computing the Minkowski sum of two polygons in the plane begin by dec...
To make computations on large data sets more efficient, algorithms will frequently divide informatio...
We present a.n algorithm to decompose the edges of planar curved object so that the carrier polygon ...
Many problems in Computational Geometry involve a simple polygon P and a family of geometric objects...
This chapter discusses techniques for decompositions of objects into the minimum number of some comp...
In this thesis, we study three different problems in the field of computational geometry: the partit...
AbstractWe propose a strategy to decompose a polygon, containing zero or more holes, into “approxima...
This paper discusses an efficient and effective framework to decompose polygon meshes into component...
In this paper we consider the problem of decomposing a simple polygon into subpolygons that exclusiv...
A minimum k-partition decomposes a rectilinear polygon with n vertices into aminimum number of disjo...
We study the problem of partitioning a given simple polygon $P$ into a minimum number of polygonal p...
We present a new quadtree-based decomposition of a polygon possibly with holes. For a polygon of n v...
Let be a rectilinear polygon. The stabbing number of a decomposition of into rectangles is the maxim...
We give polynomial-time approximation algorithms for some geometric separation problems: ffl Given ...
We study two decomposition problems in combinatorial geometry. The rst part of the thesis deals with...
AbstractSeveral algorithms for computing the Minkowski sum of two polygons in the plane begin by dec...
To make computations on large data sets more efficient, algorithms will frequently divide informatio...
We present a.n algorithm to decompose the edges of planar curved object so that the carrier polygon ...
Many problems in Computational Geometry involve a simple polygon P and a family of geometric objects...
This chapter discusses techniques for decompositions of objects into the minimum number of some comp...
In this thesis, we study three different problems in the field of computational geometry: the partit...
AbstractWe propose a strategy to decompose a polygon, containing zero or more holes, into “approxima...
This paper discusses an efficient and effective framework to decompose polygon meshes into component...
In this paper we consider the problem of decomposing a simple polygon into subpolygons that exclusiv...
A minimum k-partition decomposes a rectilinear polygon with n vertices into aminimum number of disjo...
We study the problem of partitioning a given simple polygon $P$ into a minimum number of polygonal p...
We present a new quadtree-based decomposition of a polygon possibly with holes. For a polygon of n v...
Let be a rectilinear polygon. The stabbing number of a decomposition of into rectangles is the maxim...
We give polynomial-time approximation algorithms for some geometric separation problems: ffl Given ...
We study two decomposition problems in combinatorial geometry. The rst part of the thesis deals with...
AbstractSeveral algorithms for computing the Minkowski sum of two polygons in the plane begin by dec...