Parallel computation offers the promise of great improvements in the solution of problems that, if we were restricted to sequential computation, would take so much time that solution would be impractical. There is a drawback to the use of parallel computers, however, and that is that they seem to be harder to program. For this reason, parallel algorithms in practice are often restricted to simple problems such as matrix multiplication. Certainly this is useful, and in fact we shall see later some non-obvious uses of matrix manipulation, but many of the large problems requiring solution are of a more complex nature. In particular, an instance of a problem may be structured as an arbitrary graph or tree, rather than in the regular order of a ...