The increasing use of curved surface sliding bearings as seismic isolators benefits from the improvement of analytical models that can accurately capture their experimental performance and enhance the predictive capability of nonlinear response history analyses. The mathematical formulation proposed in this paper aims at addressing the variability of the coefficient of friction based on experimental data that can be retrieved from prototype tests on Curved Surface Sliders. The formulation accounts for variation in the coefficient of friction with the instantaneous change of axial load and sliding velocity at the contact interface, and the accumulated heat due to cyclic motion; furthermore, it incorporates new features such as the static fri...