Algebraic proof systems reduce computational problems to problems about estimating the distance of a sequence of functions vec{u}=(u_1,..., u_k), given as oracles, from a linear error correcting code V. The soundness of such systems relies on methods that act "locally" on vec{u} and map it to a single function u^* that is, roughly, as far from V as are u_1,..., u_k. Motivated by these applications to efficient proof systems, we study a natural worst-case to average-case reduction of distance for linear spaces, and show several general cases in which the following statement holds: If some member of a linear space U=span(u_1,...,u_k) is delta-far from (all elements) of V in relative Hamming distance, then nearly all elements of U are (1-epsil...