In this work, we initiate the study of proximity testing to Algebraic Geometry (AG) codes. An AG code $C = C(\mathcal{C}, \mathcal{P}, D)$ is a vector space associated to evaluations on $\mathcal{P}$ of functions in the Riemann-Roch space $L_\mathcal{C}(D)$. The problem of testing proximity to an error-correcting code $C$ consists in distinguishing between the case where an input word, given as an oracle, belongs to $C$ and the one where it is far from every codeword of $C$. AG codes are good candidates to construct short proof systems, but there exists no efficient proximity tests for them. We aim to fill this gap. We construct an Interactive Oracle Proof of Proximity (IOPP) for some families of AG codes by generalizing an IOPP for Reed-...