We continue our study of the parabolic Anderson equation ¿u/¿t =k¿u+¿¿u for the space-time field u: Zd ×[0,8) ¿ R, where k ¿ [0,8) is the diffusion constant, ¿ is the discrete Laplacian, ¿ ¿ (0,8) is the coupling constant, and ¿ : Zd ×[0,8)¿R is a space-time random environment that drives the equation. The solution of this equation describes the evolution of a "reactant" u under the influence of a "catalyst" ¿, both living on Zd. In earlier work we considered three choices for ¿: independent simple random walks, the symmetric exclusion process, and the symmetric voter model, all in equilibrium at a given density. We analyzed the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of u w.r.t. ¿ , and sho...