International audienceLet A 0 ,. .. , A n be m × m symmetric matrices with entries in Q, and let A(x) be the linear pencil A 0 + x 1 A 1 + · · · + x n A n , where x = (x 1 ,. .. , x n) are unknowns. The linear matrix inequality (LMI) A(x) 0 defines the subset of R n , called spectrahedron, containing all points x such that A(x) has non-negative eigenvalues. The minimization of linear functions over spectrahedra is called semidefinite programming (SDP). Such problems appear frequently in control theory and real algebra, especially in the context of nonnegativity certificates for multivariate polynomials based on sums of squares. Numerical software for solving SDP are mostly based on the interior point method, assuming some non-degeneracy pro...