- Nous étudions le mouvement Brownien fractionnaire en temps multifractal, un modèle de processus multifractal proposé récemment dans le cadre de l'étude de séries financières. Notre intérêt porte sur les propriétés statistiques des coefficients d'ondelette issus de la décomposition de ces processus. Parmi ces propriétés nous nous intéressons particulièrement aux corrélations résiduelles (longue dépendance), à la stationnarité, qui sont les composantes essentielles permettant de caractériser les performances statistiques des estimateurs de spectre multifractal, construits à partir de transformées en ondelettes
We present a direct method of calculation of the multifractal spectrum from the wavelet decompositio...
International audienceMultifractal behavior has been identified and mathematically established for l...
AbstractLet X=(Xt)t⩾0 be a Lévy process and μ a positive Borel measure on R+. Suppose that the integ...
Conference PaperWe study <i>fractional Brownian motions in multifractal time</i>, a model for multif...
18 pagesIn Ayache and Taqqu (2005), the multifractional Brownian (mBm) motion is obtained by replaci...
We show how wavelet techniques allow to derive irregularity properties of functions on two particula...
The multifractal formalisms allow to numerically approximate the Hölder spectrum of a real-life sign...
Multifractal analysis has matured into a widely used signal and image processing tool. Due to the st...
The multifractal spectrum characterizes the scaling and singularity structures of signals and proves...
Les deux grandes classes de processus dont l'analyse multifractale a été réalisée sont les processus...
Fractional Brownian Motion (FBM) is an important tool in modeling used in several areas (biology, ec...
The multifractal spectrum characterizes the scaling and singularity structures of signals and proves...
Multifractal analysis is the mathematical study of the irregularity of objects or irregular function...
AbstractThe multifractional Brownian motion (MBM) processes are locally self-similar Gaussian proces...
The properties of several multifractal formalisms based on wavelet coefficients are compared from bo...
We present a direct method of calculation of the multifractal spectrum from the wavelet decompositio...
International audienceMultifractal behavior has been identified and mathematically established for l...
AbstractLet X=(Xt)t⩾0 be a Lévy process and μ a positive Borel measure on R+. Suppose that the integ...
Conference PaperWe study <i>fractional Brownian motions in multifractal time</i>, a model for multif...
18 pagesIn Ayache and Taqqu (2005), the multifractional Brownian (mBm) motion is obtained by replaci...
We show how wavelet techniques allow to derive irregularity properties of functions on two particula...
The multifractal formalisms allow to numerically approximate the Hölder spectrum of a real-life sign...
Multifractal analysis has matured into a widely used signal and image processing tool. Due to the st...
The multifractal spectrum characterizes the scaling and singularity structures of signals and proves...
Les deux grandes classes de processus dont l'analyse multifractale a été réalisée sont les processus...
Fractional Brownian Motion (FBM) is an important tool in modeling used in several areas (biology, ec...
The multifractal spectrum characterizes the scaling and singularity structures of signals and proves...
Multifractal analysis is the mathematical study of the irregularity of objects or irregular function...
AbstractThe multifractional Brownian motion (MBM) processes are locally self-similar Gaussian proces...
The properties of several multifractal formalisms based on wavelet coefficients are compared from bo...
We present a direct method of calculation of the multifractal spectrum from the wavelet decompositio...
International audienceMultifractal behavior has been identified and mathematically established for l...
AbstractLet X=(Xt)t⩾0 be a Lévy process and μ a positive Borel measure on R+. Suppose that the integ...