This dissertation consists of three independent chapters on econometric methods for macroeconomic analysis. In the first chapter, I propose to estimate structural impulse response functions from macroeconomic time series by doing Bayesian inference on the Structural Vector Moving Average representation of the data. This approach has two advantages over Structural Vector Autoregression analysis: It imposes prior information directly on the impulse responses in a flexible and transparent manner, and it can handle noninvertible impulse response functions. The second chapter, which is coauthored with B. J. Bates, J. H. Stock, and M. W. Watson, considers the estimation of dynamic factor models when there is temporal instability in the factor loa...