This paper presents a new framework to harness sources of programming learning analytics at a Higher Education Institution and how it has been progressively adopted at the classroom level to improve personalized learning. This new platform, called PredictCS, automatically detects lower-performing or “at-risk” students in computer programming modules and automatically and adaptively sends them feedback. PredictCS embeds multiple predictive models by leveraging multi-modal learning analytics of student data, including student characteristics, prior academic history, logged interactions between students and online resources, and students' progress in programming laboratory work, and their progression from introductory to advanced CS courses. P...