Due to the COVID19 pandemic, more higher-level education programmes have moved to online channels, raising issues in monitoring students’ learning progress. Thanks to advances in online learning systems, however, student data can be automatically collected and used for the investigation and prediction of the students’ learning performance. In this article, we present a novel approach to analyse students’ learning behaviour, as well as the relationship between these behaviours and learning assessment results, in the context of programming education. A bespoke method has been built based on a combination of Random Matrix Theory, a Community Detection algorithm and statistical hypothesis tests. The datasets contain fine-grained information abo...