International audienceGraphical network inference is used in many fields such as genomics or ecology to infer the conditional independence structure between variables, from measurements of gene expression or species abundances for instance. In many practical cases, not all variables involved in the network have been observed, and the samples are actually drawn from a distribution where some variables have been marginalized out. This challenges the sparsity assumption commonly made in graphical model inference, since marginalization yields locally dense structures, even when the original network is sparse. We present a procedure for inferring Gaussian graphical models when some variables are unobserved, that accounts both for the influence o...