Formoptimierung bezeichnet die Bestimmung der Geometrischen Gestalt eines Gebietes auf dem eine partielle Differentialgleichung (PDE) wirkt, sodass bestimmte gegebene Zielgrößen, welche von der Lösung der PDE abhängen, Extrema annehmen. Bei der Diskret Adjungierten Methode wird der Gradient einer Zielgröße bezüglich einer beliebigen Anzahl von Formparametern mit Hilfe der Lösung einer adjungierten Gleichung der diskretisierten PDE effizient ermittelt. Dieser Gradient wird dann in Verfahren der numerischen Optimierung verwendet um eine optimale Lösung zu suchen. Da sowohl die Zielgröße als auch der Gradient für die diskretisierte PDE ermittelt werden, sind beide zunächst vom verwendeten Netz abhängig. Bei groben Netzen sind sogar Unstetigke...
Auf der Basis der Abbruchfehlerentwicklung der diskretisierten Stroemungsgleichungen erhaelt man ein...
Effiziente und zuverlässige a posteriori Fehlerabschätzungen sind eine Hauptzutat für die effiziente...
Diese Dissertation verallgemeinert die nichtkonformen Finite-Elemente-Methoden (FEMn) nach Morley un...
Formoptimierung bezeichnet die Bestimmung der Geometrischen Gestalt eines Gebietes auf dem eine part...
This work was supported by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 ‚Reliabl...
Die Online-Version dieses Dokuments enthält Software, die unter den Bedingungen der GNUGeneral Publi...
This paper presents a combination of mesh adaptation and shape design optimization. The optimization...
This thesis is concentrated on the shape optimization for two-dimensional transonic airfoil by using...
Die vorliegende Arbeit untersucht Formoptimierungsprobleme mit nichtlinearen Nebenbedingungen in For...
In this thesis we analyze implicit and linearly implicit peer methods in the context of optimizatio...
Diese Dissertation beschreibt Benutzerschnittstellen und Algorithmen fuer die Erzeugung, Modifizieru...
This document sums up the researches conducted in Computational Fluid Dynamics, based on discrete ad...
Die vorliegende Arbeit befasst sich mit Methoden zur Effizienzsteigerung von Finite-Element-Berechnu...
In the herewith presented work we numerically treat geometric partial differential equations using f...
Optimierung bezüglich des NVH-Verhaltens ist oftmals nur eingeschränkt möglich. Dies liegt unter and...
Auf der Basis der Abbruchfehlerentwicklung der diskretisierten Stroemungsgleichungen erhaelt man ein...
Effiziente und zuverlässige a posteriori Fehlerabschätzungen sind eine Hauptzutat für die effiziente...
Diese Dissertation verallgemeinert die nichtkonformen Finite-Elemente-Methoden (FEMn) nach Morley un...
Formoptimierung bezeichnet die Bestimmung der Geometrischen Gestalt eines Gebietes auf dem eine part...
This work was supported by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 ‚Reliabl...
Die Online-Version dieses Dokuments enthält Software, die unter den Bedingungen der GNUGeneral Publi...
This paper presents a combination of mesh adaptation and shape design optimization. The optimization...
This thesis is concentrated on the shape optimization for two-dimensional transonic airfoil by using...
Die vorliegende Arbeit untersucht Formoptimierungsprobleme mit nichtlinearen Nebenbedingungen in For...
In this thesis we analyze implicit and linearly implicit peer methods in the context of optimizatio...
Diese Dissertation beschreibt Benutzerschnittstellen und Algorithmen fuer die Erzeugung, Modifizieru...
This document sums up the researches conducted in Computational Fluid Dynamics, based on discrete ad...
Die vorliegende Arbeit befasst sich mit Methoden zur Effizienzsteigerung von Finite-Element-Berechnu...
In the herewith presented work we numerically treat geometric partial differential equations using f...
Optimierung bezüglich des NVH-Verhaltens ist oftmals nur eingeschränkt möglich. Dies liegt unter and...
Auf der Basis der Abbruchfehlerentwicklung der diskretisierten Stroemungsgleichungen erhaelt man ein...
Effiziente und zuverlässige a posteriori Fehlerabschätzungen sind eine Hauptzutat für die effiziente...
Diese Dissertation verallgemeinert die nichtkonformen Finite-Elemente-Methoden (FEMn) nach Morley un...