International audiencePresented by the Editorial Board The Chudnovsky algorithm for the multiplication in extensions of finite fields provides a bilinear complexity uniformly linear with respect to the degree of the extension. Recently, Randriambololona has generalized the method, allowing asymmetry in the interpolation procedure and leading to new upper bounds on the bilinear complexity. In this note, we describe the construction of this asymmetric method without derived evaluation. To do this, we translate this generalization into the language of algebraic function fields and we give a strategy of construction and implementation.L'algorithme de multiplication dans les corps finis de Chudnovsky a une complexité bilinéaire uniformément liné...
International audienceThanks to a new construction of the Chudnovsky and Chudnovsky multiplication a...
Nous présentons un algorithme de multiplication dans les corps finis, basé sur une idée de G.V. et D...
The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many ...
International audienceThe Chudnovsky and Chudnovsky algorithm for the multiplication in extensions o...
arXiv admin note: text overlap with arXiv:1510.00090The Chudnovsky and Chudnovsky algorithm for the ...
On s'intéresse dans cette thèse à la complexité bilinéaire de la multiplication dans toute extension...
AbstractWe give new improvements to the Chudnovsky–Chudnovsky method that provides upper bounds on t...
International audienceWe indicate a strategy in order to construct bilinear multiplication algorithm...
AbstractWe generalize the multiplication algorithm of D.V. and G.V. Chudnovsky. Using the new algori...
AbstractThanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, we d...
International audienceChudnovsky-type algorithms of multiplication in finite fields are well known f...
AbstractFrom an interpolation method on algebraic curves, due to D.V. Chudnovsky and G.V. Chudnovsky...
Depuis 1960 et le résultat fondateur de Karatsuba, on sait que la complexité de la multiplication (d...
Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of intege...
AbstractFrom an interpolation method on algebraic curves, due to Chudnovsky and Chudnovsky, we const...
International audienceThanks to a new construction of the Chudnovsky and Chudnovsky multiplication a...
Nous présentons un algorithme de multiplication dans les corps finis, basé sur une idée de G.V. et D...
The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many ...
International audienceThe Chudnovsky and Chudnovsky algorithm for the multiplication in extensions o...
arXiv admin note: text overlap with arXiv:1510.00090The Chudnovsky and Chudnovsky algorithm for the ...
On s'intéresse dans cette thèse à la complexité bilinéaire de la multiplication dans toute extension...
AbstractWe give new improvements to the Chudnovsky–Chudnovsky method that provides upper bounds on t...
International audienceWe indicate a strategy in order to construct bilinear multiplication algorithm...
AbstractWe generalize the multiplication algorithm of D.V. and G.V. Chudnovsky. Using the new algori...
AbstractThanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, we d...
International audienceChudnovsky-type algorithms of multiplication in finite fields are well known f...
AbstractFrom an interpolation method on algebraic curves, due to D.V. Chudnovsky and G.V. Chudnovsky...
Depuis 1960 et le résultat fondateur de Karatsuba, on sait que la complexité de la multiplication (d...
Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of intege...
AbstractFrom an interpolation method on algebraic curves, due to Chudnovsky and Chudnovsky, we const...
International audienceThanks to a new construction of the Chudnovsky and Chudnovsky multiplication a...
Nous présentons un algorithme de multiplication dans les corps finis, basé sur une idée de G.V. et D...
The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many ...