Depuis 1960 et le résultat fondateur de Karatsuba, on sait que la complexité de la multiplication (d’entiers ou de polynômes) est sous-quadratique : étant donné un anneau R quelconque, le produit sur R[X] des polynômes a_0 + a_1 X et b_0 + b_1 X, pour tous a_0, a_1, b_0 et b_1 dans R, peut être calculé en seulement trois et non pas quatre multiplications sur R : (a_0 + a_1 X)(b_0 + b_1 X) = m_0 + (m_2 - m_0 - m_1)X + m_1 X^2, avec les trois produits m_0 = a_0b_0, m_1 = a_1b_1 et m_2 = (a_0 + a_1)(b_0 + b_1). De la même manière, l’algorithme de Strassen permet de multiplier deux matrices 2nx2n en seulement sept produits de matrices nxn. Les deux exemples précédents tombent dans la catégorie des applications bilinéaires : des fonctions de la ...
AbstractAlgebraic schemes of computation of bilinear forms over various rings of scalars are examine...
We present a method for multiplication in finite fields which gives multiplication algorithms with i...
Can post-Schönhage–Strassen multiplication algorithms be competitive in practice for large input siz...
Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of intege...
The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many ...
La multiplication de polynômes est une opération fondamentale en théorie de la complexité. En effet,...
AbstractWe present several bilinear algorithms for the acceleration of multiplication of n X n matri...
AbstractAlthough general theories are beginning to emerge in the area of automata based complexity t...
International audiencePresented by the Editorial Board The Chudnovsky algorithm for the multiplicati...
Cette thèse propose des améliorations aux problèmes de la multiplication et de la factorisation d en...
International audienceWe present a non-commutative algorithm for the multiplication of a 2x2-block-m...
These notes are based on a lecture given at the Toronto Student Seminar on February 2, 2012. The mat...
The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provid...
AbstractWe prove a lower bound of 2mn+2n−m−2 for the bilinear complexity of the multiplication of n×...
AbstractWe present a method for multiplication in finite fields which gives multiplication algorithm...
AbstractAlgebraic schemes of computation of bilinear forms over various rings of scalars are examine...
We present a method for multiplication in finite fields which gives multiplication algorithms with i...
Can post-Schönhage–Strassen multiplication algorithms be competitive in practice for large input siz...
Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication (of intege...
The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many ...
La multiplication de polynômes est une opération fondamentale en théorie de la complexité. En effet,...
AbstractWe present several bilinear algorithms for the acceleration of multiplication of n X n matri...
AbstractAlthough general theories are beginning to emerge in the area of automata based complexity t...
International audiencePresented by the Editorial Board The Chudnovsky algorithm for the multiplicati...
Cette thèse propose des améliorations aux problèmes de la multiplication et de la factorisation d en...
International audienceWe present a non-commutative algorithm for the multiplication of a 2x2-block-m...
These notes are based on a lecture given at the Toronto Student Seminar on February 2, 2012. The mat...
The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provid...
AbstractWe prove a lower bound of 2mn+2n−m−2 for the bilinear complexity of the multiplication of n×...
AbstractWe present a method for multiplication in finite fields which gives multiplication algorithm...
AbstractAlgebraic schemes of computation of bilinear forms over various rings of scalars are examine...
We present a method for multiplication in finite fields which gives multiplication algorithms with i...
Can post-Schönhage–Strassen multiplication algorithms be competitive in practice for large input siz...