We present details of a novel imaging algorithm based on the extended Nijboer–Zernike (ENZ) theory of diffraction. We derive integral expressions relating the electric field distribution in the entrance pupil of an optical system to the electric field in its focal region. The evaluation of these integrals is made possible by means of a highly accurate and efficient series expansion similar to those occurring in standard ENZ theory. Based on these results an ENZ imaging scheme is constructed and evaluated in detail with attention to the convergence properties and computational complexity of the new method.Imaging Science and TechnologyApplied Science