It has recently been proved by Golubitsky and coworkers that in any network of coupled dynamical systems, the possible 'rigid' patterns of synchrony of hyperbolic equilibria are determined by purely combinatorial properties of the network, known as 'balanced equivalence relations'. A pattern is 'rigid' if it persists under small 'admissible' perturbations of the differential equation - ones that respect the network structure. We discuss a natural generalisation of these ideas to time-periodic states, and motivate two basic conjectures, the Rigid Synchrony Conjecture and the Rigid Phase Conjecture. These conjectures state that for rigid hyperbolic time-periodic patterns, cells with synchronous dynamics must have synchronous input cells, and ...