[[abstract]]本計畫係針對原始粒子群聚最佳化法(Particle Swarm Optimization, PSO)之不足,提 出一嵌設有局部搜尋(local search) 功能之多目標(multiobjective) 並〈行處理(parallel processing)粒子群聚最佳化法。其主要改進作法包含:1).納入區域搜尋機制,利用改良 式NM 單體搜尋法(NM simplex search),取得鑽探搜尋(exploitation)以及探索搜尋 (exploration)的平衡,提升其最佳化收斂速度。2).提供多目標處理機制(multiobjective handling),利用不受支配等級(non-dominated level)及擁擠距離(crowding distance)來評估 解答的優劣程度,使得PSO 具備解決多目標最佳化問題之能力。3).導入適合PSO 處理 之平〈行計算機制,充分利用同步與非同步計算模式的優點,整合校內各種不同質 (heterogeneous)之工作站,減少工作站之間所需要的溝通時間,使得閒置之計算資源能 有效發揮,提升計算效能。另一方面,連續時間間隔系統(continuous-time interval systems) 之數位控制(digital control)係一不易藉由傳統方法處理的問題,為了替這種系統進〈行數 位模擬(digital simulation)或是數位設計(digital design),在數位化(discretization) 的過程 中會導致數位模型係數為不確定參數之非線性函數,而且有嚴重地指數函數[22]耦合情 況,這使得原系統之間隔結構(interval structure)在數位化的過程中喪失殆...