Motivated by segmentation issues in studies of sea current circulation, we describe a hidden Markov random field for the analysis of spatial cylindrical data, i.e. bivariate spatial series of angles and intensities. The model is based on a mixture of cylindrical densities, whose parameters vary across space according to a latent Markov field. It enables segmentation of the data within a finite number of latent classes that represent the conditional distributions of the data under specific environmental conditions, simultaneously accounting for unobserved heterogeneity and spatial auto-correlation. Further, it parsimoniously accommodates specific features of environmental cylindrical data, such as circular-linear correlation, multimodality a...