The availability of software systems can be increased by preventive measures which are triggered by failure prediction mechanisms. In this paper we present and evaluate two non-parametric techniques which model and predict the occurrence of failures as a function of discrete and continuous measurements of system variables. We employ two modelling approaches: an extended Markov chain model and a function approximation technique utilising universal basis functions (UBF). The presented modelling methods are data driven rather than analytical and can handle large amounts of variables and data. Both modelling techniques have been applied to real data of a commercial telecommunication platform. The data includes event-based log files and ...