In der Ramsey Theorie fuer Graphen haben Burr und Erdos vor nunmehr fast dreissig Jahren zwei Vermutungen formuliert, die sich als richtungsweisend erwiesen haben. Es geht darum diejenigen Graphen zu charakterisieren, deren Ramsey Zahlen linear in der Anzahl der Knoten wachsen. Diese Vermutungen besagen, dass Ramsey Zahlen linear fuer alle degenerierten Graphen wachsen und dass die Ramsey Zahlen von Wuerfeln linear wachsen. Ein Ziel dieser Dissertation ist es, abgeschwaechte Varianten dieser Vermutungen zu beweisen. In der topologischen Ramseytheorie bewies Kojman vor kurzem eine topologische Umkehrung des Satzes von Hindman und fuehrte gleichzeitig sogenannte Hindman-Raeume und van der Waerden-Raeume ein (beide sind eine Teilmenge der fol...