We propose the use of a local autoregressive (LAR) model for adaptive estimation and forecasting of three of China’s key macroeconomic variables: GDP growth, inflation and the 7-day interbank lending rate. The approach takes into account possible structural changes in the data-generating process to select a local homogeneous interval for model estimation, and is particularly well-suited to a transition economy experiencing ongoing shifts in policy and structural adjustment. Our results indicate that the proposed method outperforms alternative models and forecast methods, especially for forecast horizons of 3 to 12 months. Our 1-quarter ahead adaptive forecasts even match the performance of the well-known CMRC Langrun survey forecast...