In a number of areas of application, the behavior of systems depends sensitively on properties that pertain to the atomistic scale, i. e., the angstrom and femtosecond scales. However, generally the behaviors of interest are macroscopic and are characterized by slow evolution on the scale of meters and years. This broad disparity of length and time scales places extraordinary challenges in computational material science. The overarching objective of this dissertation is to address the problem of multiple space and time scales in atomistic systems undergoing slow macroscopic evolution while retaining full atomistic detail. Our approach may be summarized as follows: (1) The issue of accounting for finite temperature in coarse grained sy...