We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian models with linear con-straints on the covariance matrix. Maximum likelihood estimation for this class of models leads to a non-convex optimization problem which typically has many local optima. We prove that the log-likelihood function is concave over a large region of the cone of positive definite matrices. Using recent results on the asymptotic distribution of ex-treme eigenvalues of the Wishart distribution, we provide sufficient conditions for any hill climbing method to converge to the global op-timum. The proofs of these results utilize large-sample asymptotic theory under the scheme n/p → γ> 1. Remarkably, our numeri-cal simulatio...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian...
We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian...
We consider covariance parameter estimation for a Gaussian process under inequality constraints (bou...
We consider covariance estimation in the multivariate generalized Gaussian distribution (MGGD) and e...
Abstract—We consider regularized covariance estimation in scaled Gaussian settings, e.g., elliptical...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian...
We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian...
We consider covariance parameter estimation for a Gaussian process under inequality constraints (bou...
We consider covariance estimation in the multivariate generalized Gaussian distribution (MGGD) and e...
Abstract—We consider regularized covariance estimation in scaled Gaussian settings, e.g., elliptical...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...