We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian models with linear constraints on the covariance matrix. Maximum likelihood estimation for this class of models leads to a non-convex optimization problem which typically has many local maxima. Using recent results on the asymptotic distribution of extreme eigenvalues of the Wishart distribution, we provide sufficient conditions for any hill climbing method to converge to the global maximum. Although we are primarily interested in the case in which n≫p, the proofs of our results utilize large sample asymptotic theory under the scheme n/p→γ>1. Remarkably, our numerical simulations indicate that our results remain valid for p as small as 2....
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
We consider covariance estimation in the multivariate generalized Gaussian distribution (MGGD) and e...
Abstract—We consider regularized covariance estimation in scaled Gaussian settings, e.g., elliptical...
We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian...
We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian...
We consider covariance parameter estimation for a Gaussian process under inequality constraints (bou...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
We consider covariance estimation in the multivariate generalized Gaussian distribution (MGGD) and e...
Abstract—We consider regularized covariance estimation in scaled Gaussian settings, e.g., elliptical...
We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian...
We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian...
We consider covariance parameter estimation for a Gaussian process under inequality constraints (bou...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
International audienceWe consider covariance parameter estimation for a Gaussian process under inequ...
We consider covariance estimation in the multivariate generalized Gaussian distribution (MGGD) and e...
Abstract—We consider regularized covariance estimation in scaled Gaussian settings, e.g., elliptical...