We consider a 2D rotating Bose gas described by the Gross-Pitaevskii (GP) theory and investigate the properties of the ground state of the theory for rotational speeds close to the critical speed for vortex nucleation. While one could expect that the vortex distribution should be homogeneous within the condensate we prove by means of an asymptotic analysis in the strongly interacting (Thomas-Fermi) regime that it is not. More precisely we rigorously derive a formula due to Sheehy and Radzihovsky [Phys. Rev. A 70, 063620(R) (2004)] for the vortex distribution, a consequence of which is that the vortex distribution is strongly inhomogeneous close to the critical speed and gradually homogenizes when the rotation speed is increased. From the ma...