We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log ε|≪Ω≲ε −2|log ε|−1 where Ω is the rotational velocity and the coupling parameter is written as ε −2 with ε≪1. Three critical speeds can be identified. At vortices start to appear and for the vorticity is uniformly distributed over the disc. For the centrifugal forces create a hole around the center with strongly depleted density. For Ω≪ε −2|log ε|−1 vorticity is still uniformly distributed in...