Abstract. Let T be a rooted supercritical multi-type Galton–Watson (MGW) tree with types coming from a finite alphabet, conditioned to non-extinction. The λ-biased random walk (Xt)t≥0 on T is the nearest-neighbor random walk which, when at a vertex v with dv offspring, moves closer to the root with probability λ/(λ+dv), and to each of the offspring with probability 1/(λ+ dv). This walk is recurrent for λ ≥ ρ and transient for 0 ≤ λ < ρ, with ρ the Perron–Frobenius eigenvalue for the (assumed) irreducible matrix of expected offspring numbers. Subject to finite mo-ments of order p> 4 for the offspring distributions, we prove the following quenched CLT for λ-biased random walk at the critical value λ = ρ: for almost every T, the process ...
We study biased random walk on subcritical and supercritical Galton-Watson trees conditioned to surv...
61 pages, 18 ref.We consider a recurrent random walk on a rooted tree in random environment given by...
43 pages.Biased random walks on supercritical Galton--Watson trees are introduced and studied in dep...
In this note, we prove a quenched functional central limit theorem for a biased random walk on a sup...
As a model of trapping by biased motion in random structure, we study the time taken for a biased ra...
Abstract. We consider a biased random walk Xn on a Galton-Watson tree with leaves in the sub-ballist...
International audienceWe consider random walks λ-biased towards the root on a Galton-Watson tree, wh...
We prove CLTs for biased randomly trapped random walks in one dimension. By considering a sequence o...
We consider a random walk on a supercritical Galton-Watson tree with leaves, where the transition pr...
In this thesis, we are interested in random walks random walks on Galton-Watson trees and tree-index...
Consider a random walk in random environment on a supercritical Galton–Watson tree, and let tn be th...
Ce travail est consacré à l'étude de limites d'échelle de différentes fonctionnelles de marches aléa...
The purpose of this thesis is to study random walks on “decorated” Galton-Watson trees with critical...
International audienceModels of random walks in a random environment were intro- duced at first by C...
We consider a biased random walk $X_n$ on a Galton-Watson tree with leaves in the sub-ballistic regi...
We study biased random walk on subcritical and supercritical Galton-Watson trees conditioned to surv...
61 pages, 18 ref.We consider a recurrent random walk on a rooted tree in random environment given by...
43 pages.Biased random walks on supercritical Galton--Watson trees are introduced and studied in dep...
In this note, we prove a quenched functional central limit theorem for a biased random walk on a sup...
As a model of trapping by biased motion in random structure, we study the time taken for a biased ra...
Abstract. We consider a biased random walk Xn on a Galton-Watson tree with leaves in the sub-ballist...
International audienceWe consider random walks λ-biased towards the root on a Galton-Watson tree, wh...
We prove CLTs for biased randomly trapped random walks in one dimension. By considering a sequence o...
We consider a random walk on a supercritical Galton-Watson tree with leaves, where the transition pr...
In this thesis, we are interested in random walks random walks on Galton-Watson trees and tree-index...
Consider a random walk in random environment on a supercritical Galton–Watson tree, and let tn be th...
Ce travail est consacré à l'étude de limites d'échelle de différentes fonctionnelles de marches aléa...
The purpose of this thesis is to study random walks on “decorated” Galton-Watson trees with critical...
International audienceModels of random walks in a random environment were intro- duced at first by C...
We consider a biased random walk $X_n$ on a Galton-Watson tree with leaves in the sub-ballistic regi...
We study biased random walk on subcritical and supercritical Galton-Watson trees conditioned to surv...
61 pages, 18 ref.We consider a recurrent random walk on a rooted tree in random environment given by...
43 pages.Biased random walks on supercritical Galton--Watson trees are introduced and studied in dep...