Although Breadth-First Search (BFS) has several advantages over Depth-First Search (DFS) its pro-hibitive space requirements have meant that algorithm designers often pass it over in favor of DFS. To address this shortcoming, we introduce a theory of Efficient BFS (EBFS) along with a simple recursive program schema for carrying out the search. The theory is based on dominance relations, a long standing technique from the field of search algorithms. We show how the theory can be used to systematically derive solutions to two graph algorithms, namely the Single Source Shortest Path problem and the Minimum Spanning Tree problem. The solutions are found by making small sys-tematic changes to the derivation, revealing the connections between the...