We study enumerative questions on the moduli space M(L) of hyperplane ar-rangements with a given intersection lattice L. Mnëv’s universality theorem suggests that these moduli spaces can be arbitrarily complicated; indeed it is even difficult to compute the dimensionD = dimM(L). EmbeddingM(L) in a product of projective spaces, we study the degree N = degM(L), which can be interpreted as the number of arrangements inM(L) that pass through D points in general position. For generic arrangementsN can be computed combinatorially and this number also appears in the study of the Chow variety of zero dimensional cycles. We compute D and N using Schubert calculus in the case where L is the intersection lattice of the arrangement obtained by taking ...
We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a ce...
Cette thèse étudie la fibre de Milnor d'un arrangement d'hyperplans complexe central, et l'opérateur...
I will discuss recent progress in understanding the \ud topology of the complement of an arrangement...
In the first part of this thesis we deal with the theory of hyperplane arrangements, that are (finit...
This book focuses on a large class of geometric objects in moduli theory and provides explicit compu...
We give an explicit expression for the contact loci of hyperplane arrangements and show that their c...
A central question in arrangement theory is to determine whether the characteristic polynomial∆q of ...
This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arran...
Cette thèse étudie la fibre de Milnor d'un arrangement d'hyperplans complexe central, et l'opérateur...
1 Hyperplane arrangements The main object of this paper is to survey some recently discovered connec...
Using several numerical invariants, we study a partition of the space of line arrangements in the co...
We extend the Billera―Ehrenborg―Readdy map between the intersection lattice and face lattice of a ce...
Ein Arrangement bezüglich eines endlich-dimensionalen Vektorraums ist eine endliche Menge von Hypere...
Ein Arrangement bezüglich eines endlich-dimensionalen Vektorraums ist eine endliche Menge von Hypere...
An integral coefficient matrix determines an integral arrangement of hyperplanes in Rm. After modulo...
We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a ce...
Cette thèse étudie la fibre de Milnor d'un arrangement d'hyperplans complexe central, et l'opérateur...
I will discuss recent progress in understanding the \ud topology of the complement of an arrangement...
In the first part of this thesis we deal with the theory of hyperplane arrangements, that are (finit...
This book focuses on a large class of geometric objects in moduli theory and provides explicit compu...
We give an explicit expression for the contact loci of hyperplane arrangements and show that their c...
A central question in arrangement theory is to determine whether the characteristic polynomial∆q of ...
This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arran...
Cette thèse étudie la fibre de Milnor d'un arrangement d'hyperplans complexe central, et l'opérateur...
1 Hyperplane arrangements The main object of this paper is to survey some recently discovered connec...
Using several numerical invariants, we study a partition of the space of line arrangements in the co...
We extend the Billera―Ehrenborg―Readdy map between the intersection lattice and face lattice of a ce...
Ein Arrangement bezüglich eines endlich-dimensionalen Vektorraums ist eine endliche Menge von Hypere...
Ein Arrangement bezüglich eines endlich-dimensionalen Vektorraums ist eine endliche Menge von Hypere...
An integral coefficient matrix determines an integral arrangement of hyperplanes in Rm. After modulo...
We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a ce...
Cette thèse étudie la fibre de Milnor d'un arrangement d'hyperplans complexe central, et l'opérateur...
I will discuss recent progress in understanding the \ud topology of the complement of an arrangement...