We prove a version of Shimizu’s lemma for quaternionic hyperbolic space. Namely, consider groups of quaternionic hyperbolic isometries containing a parabolic map fixing infinity. We show that any element of such a group not fixing infinity has an isometric sphere whose radius is bounded by a function of the parabolic translation length at its centre
International audienceWe give a simple and relatively short proof of the following fact: any hyperbo...
Dans une première partie de cette thèse, nous donnons des minorations universelles ne dépendant que ...
This note will prove a discreteness criterion for groups of orientation-preserving isometries of the...
We give a version of Shimizu’s lemma for groups of complex hyperbolic isometries one of whose genera...
We give a generalisation of Shimizu’s lemma to complex or quaternionic hyperbolic space in any dimen...
The complex hyperbolic version of Shimizu's lemma gives an upper bound on the radii of isometric sph...
Abstract. This note will prove a discreteness criterion for groups of orientation-preserving isometr...
We give a version of Shimizu's lemma for groups of complex hyperbolic isometries one of whose genera...
We prove a Milnor–Wood inequality for representations of the fundamental group of a compact complex ...
AbstractWe show that for arbitrary fixed conjugacy classes C1,…,Cl, l⩾3, of loxodromic isometries of...
We give aversion of Shimizu’s lemma for groups of complex hyper-bolic isometries one of whose genera...
We give aversion of Shimizu’s lemma for groups of complex hyper-bolic isometries one of whose genera...
AbstractThe Morse lemma is fundamental in hyperbolic group theory. Using exponential contraction, we...
Dans une première partie de cette thèse, nous donnons des minorations universelles ne dépendant que ...
Abstract. For any countable group G whatsoever, there is a complete hyperbolic surface whose isometr...
International audienceWe give a simple and relatively short proof of the following fact: any hyperbo...
Dans une première partie de cette thèse, nous donnons des minorations universelles ne dépendant que ...
This note will prove a discreteness criterion for groups of orientation-preserving isometries of the...
We give a version of Shimizu’s lemma for groups of complex hyperbolic isometries one of whose genera...
We give a generalisation of Shimizu’s lemma to complex or quaternionic hyperbolic space in any dimen...
The complex hyperbolic version of Shimizu's lemma gives an upper bound on the radii of isometric sph...
Abstract. This note will prove a discreteness criterion for groups of orientation-preserving isometr...
We give a version of Shimizu's lemma for groups of complex hyperbolic isometries one of whose genera...
We prove a Milnor–Wood inequality for representations of the fundamental group of a compact complex ...
AbstractWe show that for arbitrary fixed conjugacy classes C1,…,Cl, l⩾3, of loxodromic isometries of...
We give aversion of Shimizu’s lemma for groups of complex hyper-bolic isometries one of whose genera...
We give aversion of Shimizu’s lemma for groups of complex hyper-bolic isometries one of whose genera...
AbstractThe Morse lemma is fundamental in hyperbolic group theory. Using exponential contraction, we...
Dans une première partie de cette thèse, nous donnons des minorations universelles ne dépendant que ...
Abstract. For any countable group G whatsoever, there is a complete hyperbolic surface whose isometr...
International audienceWe give a simple and relatively short proof of the following fact: any hyperbo...
Dans une première partie de cette thèse, nous donnons des minorations universelles ne dépendant que ...
This note will prove a discreteness criterion for groups of orientation-preserving isometries of the...