AbstractThe Morse lemma is fundamental in hyperbolic group theory. Using exponential contraction, we establish an upper bound for the Morse lemma that is optimal up to multiplicative constants, which we demonstrate by presenting a concrete example. We also prove an “anti” version of the Morse lemma. We introduce the notion of a geodesically rich space and consider applications of these results to the displacement of points under quasi-isometries that fix the ideal boundary
Abstract. We show that any infinite order element g of a virtually cyclic hyperbolically embedded su...
We prove a version of Shimizu’s lemma for quaternionic hyperbolic space. Namely, consider groups of ...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
AbstractThe Morse lemma is fundamental in hyperbolic group theory. Using exponential contraction, we...
Stable subgroups and the Morse boundary are two systematic approaches to collect and study the hyper...
We construct a one-to-one continuous map from the Morse boundary of a hierarchically hyperbolic grou...
We prove a Morse Lemma for coarsely regular quasigeodesics in nonpositively curved symmetri...
We prove a Morse Lemma for coarsely regular quasigeodesics in nonpositively curved symmetri...
International audienceThere is a gap in the proof of the main theorem in the article [Shc13a] on opt...
Abstract. This is a preliminary version of my PhD thesis. In this text we discuss possible ways to g...
We show the mapping class group, CAT(0) groups, the fundamental groups of closed 3-manifolds, and ce...
The problem concerning harmonic mappings is addressed by using the Morse splitting lemma. As a first...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
In this thesis we discuss possible ways to give quantitative measurement for two spaces not being qu...
Abstract. We show that any infinite order element g of a virtually cyclic hyperbolically embedded su...
We prove a version of Shimizu’s lemma for quaternionic hyperbolic space. Namely, consider groups of ...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
AbstractThe Morse lemma is fundamental in hyperbolic group theory. Using exponential contraction, we...
Stable subgroups and the Morse boundary are two systematic approaches to collect and study the hyper...
We construct a one-to-one continuous map from the Morse boundary of a hierarchically hyperbolic grou...
We prove a Morse Lemma for coarsely regular quasigeodesics in nonpositively curved symmetri...
We prove a Morse Lemma for coarsely regular quasigeodesics in nonpositively curved symmetri...
International audienceThere is a gap in the proof of the main theorem in the article [Shc13a] on opt...
Abstract. This is a preliminary version of my PhD thesis. In this text we discuss possible ways to g...
We show the mapping class group, CAT(0) groups, the fundamental groups of closed 3-manifolds, and ce...
The problem concerning harmonic mappings is addressed by using the Morse splitting lemma. As a first...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
In this thesis we discuss possible ways to give quantitative measurement for two spaces not being qu...
Abstract. We show that any infinite order element g of a virtually cyclic hyperbolically embedded su...
We prove a version of Shimizu’s lemma for quaternionic hyperbolic space. Namely, consider groups of ...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...