We present a constructive formalization of the Myhill-Nerode the-orem on the minimization of nite automata that follows the account in Hopcroft and Ullman's book Formal Languages and Their Relation to Automata. We chose to formalize this theorem because it illustrates many points critical to formalization of computational mathematics, especially the extraction of an important algorithm from a proof as a method of knowing that the algorithm is correct. It also gave us an opportunity to experiment with a constructive implementation of quotient sets. We carried out the formalization in Nuprl, an interactive theorem prover based on constructive type theory. Nuprl borrows an imple-mentation of the ML language from the LCF system of Milner, ...