Self-healing is recognized as a promising technique for increasing the durability of concrete structures by healing cracks, thereby reducing the need for maintenance activities over the service life and decreasing the environmental impact. Various self-healing technologies have been applied to a wide range of cementitious materials, and the performance has generally been assessed under ‘ideal’ laboratory conditions. Performance tests under ideal conditions, tailored to the self-healing mechanism, can demonstrate the self-healing potential. However, there is an urgent need to prove the robustness and reliability of self-healing under realistic simulated conditions and in real applications before entering the market. This review focuses on th...