[[abstract]]第三次人工智慧 (Artificial intelligence, 革命性地崛起,人類科技躍升 智 慧世代 儼然成為進行式。海量數據主要由 智慧型行動個人裝置 經由聯網活動,以及物聯網感知裝置所接收之訊息組成 透過網際網路雙向傳遞,產生各式 結構化、半結構化 與非結構化數據 ;經由人工智慧系統框架演算法,分析海量數據中所蘊藏富含價值之資訊,將其辨識、擷取、分群、歸納,藉此達到預判以及系統自我學習目的,其結果具有高度精準性以及高可信度。各國相繼提出高科技生 產策略,其建構於人工智慧主體的系統 關鍵技術 。 實證 研究指出, 物聯網 (Internet of things, 技術作為鏈結虛擬與實體媒介,能有效雙向傳遞接收之數據以及下達決策指令,且具有可靠性、完整性與即時性。導入產業媒合相容 特性之商業模式, 技術框架具 高信度決策輔助, 能實質 提升產業營運績效。近年 來 科技革新產業面臨轉型或 升級 ,系統框架結合管理學理論模型建構 ,以 學術研究商業化模式 作為 技術 導入 切點,勢必 影響 各行 百業 之 商業模式與經營策略 。 學術研究機構具有前端創新性研究能量,整合 實務 技術 以實現 科技 創新、管理創新 以及價值創新三面向 ,並以擴散創新為主要表現手段 。本研究採以雙架構 量化研究 方式 利用層級分析 Analytic h ierarchy p rocess ,AHP 方法, 建構智慧化層級架構評估準則之優先發展權重排序,並 尋求替代方案之可行性 利用 結構方程模式 Structural equation modeling, SEM 方法, 檢驗 學術研究商業化構念對於智慧製造、智慧學習之結構關聯性 並 驗證本研究提出假說 。 AHP 問卷共...