Finite index subgroups of the modular group are of great arithmetic importance. Farey symbols, introduced by Ravi Kulkarni in 1991, are a tool for working with these groups. Given such a group F, a Farey symbol for Г is a certain finite sequence of rational numbers (representing vertices of a fundamental domain of Г) together with pairing information for the edges between the vertices. They are a compact way of encoding the information about the group and they provide a simple way to do calculations with the group. For example: calculating an independent set of generators and decomposing group elements into a word in these generators, finding coset representatives, elliptic points, and genus of the group, testing if the group is congruence,...