Neste trabalho reformulamos o problema de complementaridade não linear generalizado (GNCP) em cones poliedrais como um sistema não linear com restrição de não negatividade em algumas variáveis, e trabalhamos na resolução de tal reformulação por meio de estratégias de pontos interiores. Em particular, definimos dois algoritmos e provamos a convergência local de tais algoritmos sob hipóteses usuais. O primeiro algoritmo é baseado no método de Newton, e o segundo, no método tensorial de Chebyshev. O algoritmo baseado no método de Chebyshev pode ser visto como um método do tipo preditor-corretor. Tal algoritmo, quando aplicado a problemas em que as funções envolvidas são afins, e com escolhas adequadas dos parâmetros, torna-se o bem conhecido a...
In this paper, we study the linear complementarity problems on extended second order cones. We conve...
In the first part of the thesis we focus on algorithms acting in the small neighborhood of the centr...
10.1023/A:1022996819381Computational Optimization and Applications251-339-56CPPP
In this article, we first propose an unconstrained optimization reformulation of the generalized non...
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Ci...
Reformulations of a generalization of a second-order cone complementarity problem (GSOCCP) as optimi...
Este artigo apresenta um algoritmo de dois passos para a resolução numérica de problemas de compleme...
Recent improvements in the capabilities of complementarity solvers have led to an increased interest...
Minimization of a differentiable function subject to box constraints is proposed as a strategy to so...
In the last years, much work has been done with the aim of finding efficient algorithms to solve nonlin...
In this thesis, we study the second-order cone complementarity problem, SOCCP for short. This proble...
Making use of a smoothing NCP-function, we formulate the generalized complementarity problem (GCP) o...
The complementarity problem consists in finding x ∈ IR n such that x ≥ 0,F (x) ≥ 0 and x t F (x) =0...
International audiencehe Josephy--Newton method for solving a nonlinear complementarity problem cons...
he use of an Infeasible Interior-Point (IIP) algorithm is investigated for the solution of the Linea...
In this paper, we study the linear complementarity problems on extended second order cones. We conve...
In the first part of the thesis we focus on algorithms acting in the small neighborhood of the centr...
10.1023/A:1022996819381Computational Optimization and Applications251-339-56CPPP
In this article, we first propose an unconstrained optimization reformulation of the generalized non...
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Ci...
Reformulations of a generalization of a second-order cone complementarity problem (GSOCCP) as optimi...
Este artigo apresenta um algoritmo de dois passos para a resolução numérica de problemas de compleme...
Recent improvements in the capabilities of complementarity solvers have led to an increased interest...
Minimization of a differentiable function subject to box constraints is proposed as a strategy to so...
In the last years, much work has been done with the aim of finding efficient algorithms to solve nonlin...
In this thesis, we study the second-order cone complementarity problem, SOCCP for short. This proble...
Making use of a smoothing NCP-function, we formulate the generalized complementarity problem (GCP) o...
The complementarity problem consists in finding x ∈ IR n such that x ≥ 0,F (x) ≥ 0 and x t F (x) =0...
International audiencehe Josephy--Newton method for solving a nonlinear complementarity problem cons...
he use of an Infeasible Interior-Point (IIP) algorithm is investigated for the solution of the Linea...
In this paper, we study the linear complementarity problems on extended second order cones. We conve...
In the first part of the thesis we focus on algorithms acting in the small neighborhood of the centr...
10.1023/A:1022996819381Computational Optimization and Applications251-339-56CPPP