Results are presented from a new approach to modeling the subgrid-scale stresses in large-eddy simulation of turbulent flows, based on explicit evaluation of the subgrid velocity components from a multifractal representation of the subgrid vorticity field. The approach is motivated by prior studies showing that the enstrophy field exhibits multifractal scale-similarity on inertial-range scales in high Reynolds number turbulence. A scale-invariant multiplicative cascade thus gives the spatial distribution of subgrid vorticity magnitudes within each resolved-scale cell, and an additive cascade gives the progressively isotropic decorrelation of subgrid vorticity orientations from the resolved scale ΔΔ to the viscous scale λνλν. The subgrid vel...