The present thesis is based on a paper by Bencivenga. In this paper the author develops a theory of function for the dual and bireal variables. He constructs the "retto" and "hyperbolic" planes for the geometric representation of the dual and bireal variables, respectively, and establishes a type of conformal mapping of these planes into themselves by means of differentiable functions of the variable. Further, in each of these planes he proves the analogue for the Cauchy integral theorem of the complex plane. Finally he shows that functions of the dual and bireal variable which possess all derivatives at a given point of the plane may be expanded in a Taylor series about that point. In the first chapter we give a summary of this paper. Ben...