21 pagesInternational audienceWe introduce two min-max problems: the first problem is to minimize the supremum of finitely many rational functions over a compact basic semi-algebraic set whereas the second problem is a 2-player zero-sum polynomial game in randomized strategies and with compact basic semi-algebraic pure strategy sets. It is proved that their optimal solution can be approximated by solving a hierarchy of semidefinite relaxations, in the spirit of the moment approach developed in Lasserre. This provides a unified approach and a class of algorithms to approximate all Nash equilibria and min-max strategies of many static and dynamic games. Each semidefinite relaxation can be solved in time which is polynomial in its input size a...