Cette thèse, constituée de trois grandes parties, a pour objet l’étude générale ducomportement, en temps grands, de l’unique solution du problème de Cauchy-Dirichlet pour deséquations de Hamilton-Jacobi visqueuses de type sur et sous quadratiques. Après un bref rappeldes notions de base de la théorie sur les solutions de viscosité qui constitue le cadre de ce travail, lapremière partie établit des résultats sur l’existence globale en temps et l’unicité de la solution deviscosité dudit problème de Cauchy-Dirichlet. La deuxième partie s’intéresse au comportement decette solution pour des Hamiltoniens sur quadratiques. Sous des hypothèses très générales, nousprouvons que le comportement de la solution dépend du signe de l’unique constante ergo...
We investigate large-time asymptotics for viscous Hamilton--Jacobi equations with possibly degenerat...
International audienceWe study the large time behavior of solutions of first-order convex Hamilton-J...
AbstractThe large time behavior of solutions to the Cauchy problem for the viscous Hamilton–Jacobi e...
We investigate the large time behavior of viscosity solutions of the Cauchy-Dirichlet problem with p...
Consider the viscous Hamilton-Jacobi equation{ ut −∆u = |∇u|q, t> 0, x ∈ RN u(0, x) = u0(x), x ∈...
We study the Dirichlet problem for viscous Hamilton-Jacobi Equations. De-spite this type of equation...
Abstract We study the long-time behavior of the unique viscosity solution u of the viscous Hamilton-...
We study the large time behavior of Lipschitz continuous, possibly unbounded, viscosity solutions of...
30 pages, 27 ref.International audienceWe study the large-time behavior of bounded from below soluti...
We study the long-time behavior of the unique viscosity solution $u$ of the viscous Hamilton-Jacobi ...
International audienceThe large time behavior of solutions to Cauchy problem for viscous Hamilton-Ja...
In this article, we are interested in the large time behavior of solutions of the Dirichlet problem ...
Cette thèse, constituée de trois grandes parties, a pour objet l étude générale ducomportement, en t...
this article we are interested in the behavior, as t ! +1, of the viscosity solutions of first-order...
We consider the Hamilton–Jacobi equation ?_t u + H(x, Du) = 0 in (0, +?) × T^N , where T^N is the fl...
We investigate large-time asymptotics for viscous Hamilton--Jacobi equations with possibly degenerat...
International audienceWe study the large time behavior of solutions of first-order convex Hamilton-J...
AbstractThe large time behavior of solutions to the Cauchy problem for the viscous Hamilton–Jacobi e...
We investigate the large time behavior of viscosity solutions of the Cauchy-Dirichlet problem with p...
Consider the viscous Hamilton-Jacobi equation{ ut −∆u = |∇u|q, t> 0, x ∈ RN u(0, x) = u0(x), x ∈...
We study the Dirichlet problem for viscous Hamilton-Jacobi Equations. De-spite this type of equation...
Abstract We study the long-time behavior of the unique viscosity solution u of the viscous Hamilton-...
We study the large time behavior of Lipschitz continuous, possibly unbounded, viscosity solutions of...
30 pages, 27 ref.International audienceWe study the large-time behavior of bounded from below soluti...
We study the long-time behavior of the unique viscosity solution $u$ of the viscous Hamilton-Jacobi ...
International audienceThe large time behavior of solutions to Cauchy problem for viscous Hamilton-Ja...
In this article, we are interested in the large time behavior of solutions of the Dirichlet problem ...
Cette thèse, constituée de trois grandes parties, a pour objet l étude générale ducomportement, en t...
this article we are interested in the behavior, as t ! +1, of the viscosity solutions of first-order...
We consider the Hamilton–Jacobi equation ?_t u + H(x, Du) = 0 in (0, +?) × T^N , where T^N is the fl...
We investigate large-time asymptotics for viscous Hamilton--Jacobi equations with possibly degenerat...
International audienceWe study the large time behavior of solutions of first-order convex Hamilton-J...
AbstractThe large time behavior of solutions to the Cauchy problem for the viscous Hamilton–Jacobi e...