Koristeći pojmove iz izračunljivosti kao što su rekurzivne funkcije i rekurzivni skupovi definirali smo izračunljiv metrički prostor. Unutar takvih prostora promatrali smo racionalne otvorene skupove, definirali rekurzivno prebrojive skupove te iskazali svojstvo efektivnog pokrivanja. Osim samog iskaza, pokazali smo primjer izračunljivog metričkog prostora koji ima svojstvo efektivnog pokrivanja.Using computability terms like computable functions and computable sets we have defined computable metric spaces. In those we have been observing properties of rational open sets, defined recursively enumerable sets and finally, stated the effective covering property. Except stating, we have demonstrated an example of computable metric space with th...