This paper includes a twofold result for the Nonlinear Conjugate Gradient (NCG) method, in large scale unconstrained optimization. First we consider a theoretical analysis, where preconditioning is embedded in a strong convergence framework of an NCG method from the literature. Mild conditions to be satisfied by the preconditioners are defined, in order to preserve NCG convergence. As a second task, we also detail the use of novel matrix-free preconditioners for NCG. Our proposals are based on quasi-Newton updates, and either satisfy the secant equation or a secant-like condition at some of the previous iterates. We show that, in some sense, the preconditioners we propose also approximate the inverse of the Hessian matrix. In particular, th...