Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 (M = Mn, Ni, Co, etc., 0 < x <1, 0 < y ≤ 0.33), have attracted much attention as cathode materials for lithium ion batteries in recent years. They exhibit very promising capacities, up to above 300 mA h g−1, due to transition metal redox reactions and unconventional oxygen anion redox reaction. However, they suffer from structural degradation and severe voltage fade (i.e., decreasing energy storage) upon cycling, which are plaguing their practical application. Thus, this review will aim to describe the pristine structure, high-capacity mechanisms and structure evolutions of LMROs. Also, recent progress associated with understanding and mitiga...
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1−x−y]O2 (LLNMO), are promising...
Lithium batteries for UPS, portable electronics and electrical vehicles rely on high-energy cathodes...
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1-x-y]O-2 (LLNMO), are promisin...
Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 ...
Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 ...
Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 ...
Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 ...
One major challenge in the field of lithium-ion batteries is to understand the degradation mechanism...
Li and Mn-rich layered oxides with the general structure xLi(2)MnO(3)(1-x)LiMO2 (M=Ni, Mn, Co) are p...
Li and Mn-rich layered oxides with the general structure xLi(2)MnO(3)(1-x)LiMO2 (M=Ni, Mn, Co) are p...
Li-rich Mn-based oxides (LRMO) are promising cathode materials to build next-generation lithium-ion ...
Li and Mn-rich layered oxides, xLi(2)MnO(3)<bold></bold>(1-x)LiMO2 (M=Ni, Mn, Co), are promising cat...
With high capacity at low cost, Li- and Mn-rich (LMR) layered oxides are a promising class of cathod...
Abstract: One major challenge in the field of lithium-ion batteries is to understand the degradation...
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1−x−y]O2 (LLNMO), are promising...
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1−x−y]O2 (LLNMO), are promising...
Lithium batteries for UPS, portable electronics and electrical vehicles rely on high-energy cathodes...
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1-x-y]O-2 (LLNMO), are promisin...
Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 ...
Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 ...
Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 ...
Layered lithium- and manganese-rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 ...
One major challenge in the field of lithium-ion batteries is to understand the degradation mechanism...
Li and Mn-rich layered oxides with the general structure xLi(2)MnO(3)(1-x)LiMO2 (M=Ni, Mn, Co) are p...
Li and Mn-rich layered oxides with the general structure xLi(2)MnO(3)(1-x)LiMO2 (M=Ni, Mn, Co) are p...
Li-rich Mn-based oxides (LRMO) are promising cathode materials to build next-generation lithium-ion ...
Li and Mn-rich layered oxides, xLi(2)MnO(3)<bold></bold>(1-x)LiMO2 (M=Ni, Mn, Co), are promising cat...
With high capacity at low cost, Li- and Mn-rich (LMR) layered oxides are a promising class of cathod...
Abstract: One major challenge in the field of lithium-ion batteries is to understand the degradation...
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1−x−y]O2 (LLNMO), are promising...
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1−x−y]O2 (LLNMO), are promising...
Lithium batteries for UPS, portable electronics and electrical vehicles rely on high-energy cathodes...
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1-x-y]O-2 (LLNMO), are promisin...