This thesis deals with the current methods of semantic segmentation using deep learning. Other approaches of neaural networks in the area of deep learning are also discussed. It contains historical solutions of neural networks, their development, and basic principle. Convolutional neural networks are nowadays the most preferable networks in solving tasks as detection, classification, and image segmentation. The functionality was verified on a freely available environment based on conditional random fields as recurrent neural networks and compered with the deep convolutional neural networks using conditional random fields as postprocess. The latter mentioned method has become the basis for training of new models on two different datasets. Th...