We investigate whether the elliptical instability is important for tidal dissipation in gaseous planets and stars. In a companion paper, we found that the conventional elliptical instability results in insufficient dissipation because it produces long-lived vortices that then quench further instability. Here, we study whether the addition of a magnetic field prevents those vortices from forming, and hence leads to enhanced dissipation. We present results from magnetohydrodynamic simulations that evolve the elliptical instability in a local patch of a rotating planet or star, in the presence of a weak magnetic field. We find that magnetic fields do indeed prevent vortices from forming, and hence greatly enhance the steady-state dissipation r...