This paper addresses the problem of synchronizing orthogonal matrices over directed graphs. For synchronized transformations (or matrices), composite transformations over loops equal the identity. We formulate the synchronization problem as a least-squares optimization problem with nonlinear constraints. The synchronization problem appears as one of the key components in applications ranging from 3D-localization to image registration. The main contributions of this work can be summarized as the introduction of two novel algorithms; one for symmetric graphs and one for graphs that are possibly asymmetric. Under general conditions, the former has guaranteed convergence to the solution of a spectral relaxation to the synchronization problem. T...