The parabolic Anderson model on Z^d with i.i.d. potential is known to completely localise if the distribution of the potential is sufficiently heavy-tailed at infinity. In this paper we investigate a modification of the model in which the potential is partially duplicated in a symmetric way across a plane through the origin. In the case of potential distribution with polynomial tail decay, we exhibit a surprising phase transition in the model as the decay exponent varies. For large values of the exponent the model completely localises as in the i.i.d. case. By contrast, for small values of the exponent we show that the model may delocalise. More precisely, we show that there is an event of non-negligible probability on which the solution ha...