We study the asymptotic behaviour of a d-dimensional self-interacting random walk (Xn)n∈ℕ (ℕ:={1,2,3,…}) which is repelled or attracted by the centre of mass of its previous trajectory. The walk’s trajectory (X1,…,Xn) models a random polymer chain in either poor or good solvent. In addition to some natural regularity conditions, we assume that the walk has one-step mean drift TeX for ρ∈ℝ and β≥0. When β0, we show that Xn is transient with a limiting (random) direction and satisfies a super-diffusive law of large numbers: n−1/(1+β)Xn converges almost surely to some random vector. When β∈(0,1) there is sub-ballistic rate of escape. When β≥0 and ρ∈ℝ we give almost-sure bounds on the norms ‖Xn‖, which in the context of the polymer model reveal ...