To track the gradual change of the adjacency matrix of a simple graph $\mathcal{G}$ into the signless Laplacian matrix, V. Nikiforov in \cite{NKF} suggested the study of the convex linear combination $A_{\alpha }$ (\textit{$\alpha$-adjacency matrix}), \[A_{\alpha }\left( \mathcal{G}\right)=\alpha D\left( \mathcal{G}\right) +\left( 1-\alpha \right) A\left( \mathcal{G}\right),\] for $\alpha \in \left[ 0,1\right]$, where $A\left( \mathcal{G}\right)$ and $D\left( \mathcal{G}\right)$ are the adjacency and the diagonal vertex degrees matrices of $\mathcal{G}$, respectively. Taking this definition as an idea the next matrix was considered for $a,b \in \mathbb{R}$. The matrix $A_{a,b}$ defined by $$ A_{a,b}\left( \mathcal{G}\right) =a D\l...